Lecture 1. Material from "Language and Proofs in Algebra: An Introduction"

Extended Euclidean Algorithm (EEA)

Input: Integers a, b with $a \ge b > 0$.

Initialize: Construct a table with four columns so that

- ullet the columns are labelled $x,\,y,\,r$ and q,
- the first row in the table is (1,0,a,0),
- the second row in the table is (0, 1, b, 0).

Repeat: For $i \geq 3$,

- $q_i \leftarrow \left\lfloor \frac{r_{i-2}}{r_{i-1}} \right\rfloor$
- $Row_i \leftarrow Row_{i-2} q_i Row_{i-1}$

ε Properties of the Greatest Common Divisor

99

Stop: When $r_i = 0$.

Output: Set n = i - 1. Then $gcd(a, b) = r_n$, and $s = x_n$ and $t = y_n$ are a certificate of correctness.

Example 11

Let $d = \gcd(2172, 423)$.

- 1. Apply EEA to compute d and give a certificate of correctness for d.
- 2. Determine $d_1 = \gcd(423, -2172)$ and give a certificate of correctness for d_1 .

Solution:

1.

x	y	r	q
1	0	2172	0
0	1	423	0
1	-5	57	5
-7	36	24	7
15	-77	9	2
-37	190	6	2
52	-267	3	1
-141	724	0	2

From the table constructed by applying EEA above, we have determined that n=7, and $d=\gcd(2172,423)=r_7=3$. The certificate of correctness is $s=x_7=52$ and $t=y_7=-267$, and indeed we check that

$$2172 \times (52) + 423 \times (-267) = 112,944 - 112,941 = 3.$$
 (6.7)

2. We have $d_1=\gcd(423,-2172)=\gcd(2172,423)=3$, from part 1 above. Our certificate of correctness is s=-267 and t=-52, since we can rewrite equation (6.7) as

$$423 \times (-267) + (-2172) \times (-52) = 3.$$